Contribution from the McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210

Reactions of Transition Metal-Carbon o-Bonded Complexes with Chlorosulfonyl Isocyanate. Metal-2-Pyrrolidone, $-\Delta^3$ -Pyrrolinone, and **-N-Acyl-N-(chlorosulfonyl or sulfamoy1)amido Complexes**

YASUHIRO YAMAMOTO' and ANDREW WOJCICKI*

Received December 19, *I972*

Reactions of transition metal 2-alkenyls and 2-alkynyls with chlorosulfonyl isocyanate have led to the preparation of three classes of new complexes: (1) metal-alkyl complexes containing a 2-pyrrolidone ring, *(2)* metal-vinyl complexes containing a Δ^3 -pyrrolinone ring, and (3) a metal-N-acyl-N-chlorosulfonylamido complex. The following were synthesized in this $\frac{1}{\sqrt{1-\frac{1}{n}}}$ manner: **h5-C,HSFe(CO),CHC(R)(R')C(0)N(X)CH,** (R = R' = CH,, **X** = S0,Cl; R = H, R' = C,H,, **X=** S0,Cl; R = H, $R' = CH_3$, $X = H$), $h^5 - C_5H_5F$ e(CO)₂C=C(R)C(O)N(X)CH₂ (R = CH₃ and C₆H₅, $X = SO_2Cl$; R = CH₂Fe(CO)₂(h⁵C₅H₅), $X =$ H), h ⁵-C₅ H₅Mo(CO)₃C=C(C₆H₅)C(O)N(SO₂Cl)CH₂, Mn(CO)₅C=C(C₆H₅)C(O)N(SO₂Cl)CH₂, and h ⁵-C₅H₅Fe(CO)₂N-(SO₂Cl)C(O)CH₂C(CH₃)=CH₂. The alkyls h⁵-C₅H₅Fe(CO)₂R (R = CH₃ and CH₂C₆H₅) failed to react with ClSO₂NCO under similar, ambient, conditions, and so did h⁵-C₅H₅Fe(CO)₂CH₂C≡CCH₃ with C been characterized through elemental analyses, infrared and 1H nmr spectroscopy, and chemical reactivity. The *2* pyrrolidone and A3-pyrrolinone complexes undergo a number of ring reactions to give, *inter alia,* the sulfonamides **(X** = S0,NHR or SO,NR,), the unsubstituted derivatives **(X** = H), and a condensation product with benzaldehyde. The reactions of h^5 -C_sH_sFe(CO)₂N(SO₂Cl)C(O)CH₂C(CH₃)=CH₂ are not as extensive; they include conversion to the corresponding sulfonamides and cleavage with HCl to give h^5 -C₅H₅Fe(CO)₂Cl and CH₂=C(CH₃)CH₂CONH₂. Attempts at cleavage of the Fe-C bonds in the 2-pyrrolidone complexes using HCl, KOH, HgCl₂, I₂, or SO₂ led, with one exception, to recovery of the starting material only. It is proposed that the reactions of the 2-alkenyls and 2-alkynyls with ClS0,NCO proceed *via* the intermediacy of the dipolar metal- h^2 -olefin and metal- h^2 -allene complexes. The former appears to rearrange either by addition of the negative nitrogen to the terminal CH₂ of the bonded olefin (cycloaddition) or by displacement of the coordinated double bond by the nitrogen (apparent insertion); the latter collapses only *via* addition of the nitrogen to the methylene carbon of the bonded allene.

Introduction

Following the original observation² that transition metal-2-alkynyl complexes react readily with $SO₂$ to afford metalvinyl derivatives containing a sultine ring³ (eq 1), this general

type of $(3 + 2)$ cycloaddition with 1,2 metal migration has been shown to extend to other electrophiles, *e.g.,* S03,4 $C_6H_5NSO^5$ (CN)₂C=C(CN)₂,⁶ and CF₃C(O)CF₃.⁷ In contrast, the behavior of analogous transition metal-2-alkenyl compounds toward these same electrophilic reagents appears to be more complex. Thus, SO_2 inserts into the metal-carbon bonds⁸ whereas $(CN)_2C=C(CN)_2$ affords (3 + 2) cycloaddition products6*' **(eq** 2). The resultant vinyl and alkyl com-

(1) On leave from the Institute of Physical and Chemical Research, Wako-shi, Saitama, Japan.

(2) J. E. Thomasson and A. Wojcicki, *J. Amer. Chem. Soc.,* **90, 2709 (1968).**

(3) (a) **J.** E. Thomasson, P. W. Robinson, D. A. **Ross,** and A. Wojcicki, *Inorg. Chem.,* **10, 2130 (1971);** (b) M. R. Churchill and **J.** Wormald, *J. Amer. Chem. SOC.,* **93, 354 (1971).**

(4) (a) D. W. Lichtenberg and A. Wojcicki, *J. Organometal. Chem.,* **33, C77 (1971);** (b) J.-L. Roustan, J.-Y. Merour, **J.** Benaim, and C. Charrier, C. R. Acad. Sci., Ser. C., 274, 537 (1972); (c) D. W.
Lichtenberg and A. Wojcicki, *Inorg. Chim. Acta*, in press.
(5) P. W. Robinson and A. Wojcicki, *Chem. Commun.*, 951

(1970).

(6) S. R. Su and A. Wojcicki, *J. Organometal. Chem.,* **31, C34** (1971) .

(7) A. Wojcicki and D. W. Lichtenberg, Abstracts, **165th** National Meeting of the American Chemical Society, Dallas, Texas, April **1973,** No. INOR **75;** D. W. Lichtenberg and A. Wojcicki, to be submitted for publication.

(1968); (b) R. L. Downs, Ph.D. Thesis, The Ohio State University, (8) (a) F. A. Hartman and A. Wojcicki, *Inorg. Chim. Acta,* **2, 289**

1968;(c) J.-Y. Merour, *C. R. Acad. Sci., Ser. C,* **271, 1397 (1970). (9)** W. P. Giering and M. Rosenblum, *J. Amer. Chem. Soc.,* **93, 5299 (1971).**

 $[M]CH_2C(R")=C(R)R' + (CN)_2C=C(CN)_2$ –

 $\begin{bmatrix} R & R' & CN \\ R'' & C' & C' & CN \\ [M] - C & C' & CN \end{bmatrix}$ (2)

plexes containing five-membered rings present themselves as potential precursors of heterocyclic and homocyclic organic compounds.

In order to ascertain the scope of these reactions and to elucidate various factors which promote either the insertion or the cycloaddition, we have extended our investigation to another well-recognized electrophilic reagent, ClSO₂NCO.¹⁰ Reported here in detail are results of our study. Some aspects of this work were communicated earlier. **l1**

Experimental Section

General Procedures. All reactions were carried out under an atmosphere of nitrogen. The alumina used in chromatographic separations and purifications was deactivated with H,O (10%). Melting points were taken on a Thomas-Hoover capillary melting point apparatus and *are* uncorrected. Elemental analyses were done by Dr. F. Pascher, Mikroanalytisches Laboratorium, Bonn, Germany, and by Galbraith Laboratories, Inc., Knoxville, Tenn.

Physical Measurements. Infrared spectra were recorded on a Perkin-Elmer Model 337 spectrophotometer. Hydrogen-l nmr spectra were obtained on a Varian Associates A-60 spectrometer using tetramethylsilane as a reference. Mass spectral measurements were made on an AEI Model MS-9 spectrometer by Mr. C. Weisenberger.

(10) For a recent review see, for example, R. Graf, Angew. Chem., 80, 179 (1968).
80, 179 (1968). Yamamoto and A. Wojcicki, *Inorg. Nucl. Chem. Lett.*, (11) (a) Y. Yamamoto and A. Wojcicki, *J. Chem. Soc.*, 8, 333 (1972);

Chem. Commun., **1088 (1972).** (c) During the final stages of prepa- ration of this manuscript **we** learned that Rosenblum, *et al.,* have **syn**thesized several strictly analogous 2-pyrrolidone and Δ^3 -pyrrolinone derivatives of $h^5C_5H_5Fe(CO)_2$; see W. P. Giering, S. Raghu, M. Rosenblum, **A.** Cutler, D. Ehntholt, and R. W. Fish, *J. Amer. Chem. Soc.,* **94, 8251 (1972).**

Materials. Chlorosulfonyl isocyanate was procured from Aldrich Chemical Co. Its further purification by distillation, carried out in the early stages of this work, appeared to have no effect on the nature and yields of various organometallic products. All other chemicals and solvents obtained commercially were reagent grade quality or equivalent. They were used as received. Tetrahydrofuran (THF) **was** distilled from LiAlH, under a nitrogen atmosphere immediately before use.

The organoiron, -molybdenum, and -manganese compounds *h5-* $C_5H_5Fe(CO)_2CH_2C(R'')=C(R)R'$ ($R = R' = CH_3$, $R'' = H;^{8b}R =$ $\tilde{\text{CH}}_3$ ¹³), $h^5\text{-C}_5\text{H}_5\text{Fe(CO)}_2\text{CH}_2\text{C}\text{C}\text{R}$ (R = CH₃, C₆H₅),^{3a} $h^5\text{-C}_5\text{H}_5\text{Fe}$ - $(CO)_2CH_2C=CCH_2Fe(CO)_2(h^5-C_5H_5),^{14}h^5-C_5H_5Fe(CO)_2R$ **(R** = CH_3 , ¹⁵ $CH_2C_6H_5^{16}$, h^5 -C₅H₅Fe(CO)[P(C₆H₅)₃]CH₃,¹⁷ h^5 -C₅H₅Mo- $(CO)_3CH_2CH=CHC_6H_5$,⁸b h^5 -C₅H₅Mo(CO)₃CH₂C=CC₆H₅ $(CO)_{s}CH_{2}CH=CHC_{6}H_{s}^{3a}$ and $Mn(CO)_{s}CH_{2}C=CC_{6}H_{s}^{3a}$ were prepared according to published methods. C_6 **H**₃, **R**^{\prime} = **R**^{\prime} = **H**₃³**bB**₄ **C** + **CH**₃, **R**^{\prime} = **R**^{\prime} = **H**₁¹²**R** = **R**^{\prime} = **H**, **R**^{\prime} = Mn-

Reactions of Metal-2-Alkenyl Compounds with ClS0,NCO. (a) Preparation of Metal-2-Pyrrolidone Complexes. A representative reaction, that of h^5 -C₈H₈Fe(CO)₂CH₂CH=C(CH₃)₂ with ClSO₂NCO to give h^5 -C_s H_sFe(CO)₂CHC(CH₃)₂C(O)N(SO₂Cl)CH₂, is described in detail.

at 25° was added dropwise with stirring to a solution of h^5 -C_sH_sFe- $(CO)_2CH_2CH=C(CH_3)_2$ (0.90 g, 3.7 mmol) in 20 ml of CH₂Cl₂ at *ca.* -70° . The resulting mixture was stirred for 20 min at approximately -45° and then treated with *ca*. 10 ml of H_2O to decompose unreacted CISO, NCO. The organic layer was dried over $MgSO₄$ and filtered by suction through Florisil. The solvent was then removed *in vacuo* and the residue was washed with pentane to afford 1.06 g (75% yield) of Chlorosulfonyl isocyanate (0.78 g, 5.5 mmol) in 5.5 ml of benzene Chlorosulfonyl isocyanate (0.78 g, 5.5 mmot 25° was added dropwise with stirring to a sol CO₂ CH= C(CH₃)₂ (0.90 g, 3.7 mmol) in 2
7.70°. The resulting mixture was stirred for 20
4.5° and then treated with *ca*. 10 m

 h^5 -C₅H₅Fe(CO)₂CHC(CH₃)₂C(O)N(SO₂Cl)CH₂ as a yellow-orange crystalline solid. Recrystallization was effected from CH_2Cl_2 pentane. Because of its instability the compound could not be satisfactorily characterized by elemental analyses. It was converted to two stable derivatives which were fully analyzed *(vide infra).*

By using a strictly analogous procedure, 1.2 g (81% yield) of *h5-*

 $C_5H_5Fe(CO)_2CHCH(C_6H_5)C(O)N(SO_2Cl)CH_2$ was obtained from h^5 - $C_sH_sFe(CO)_2CH_2CH=CHC_6H_s$ (1.0 g, 3.4 mmol) and ClSO₂NCO (4.5 mmol). However, after this same reaction was carried out at 10° for 20 min, chromatography on alumina afforded $17\% h^5$ -C_sH_sFe-

 $(CO)_2Cl$ (benzene eluent) and 37% h^s -C_sH_sFe(CO)₂CHCH(C₆H_s)-

C(O)NHCH, (CHCl, eluent). Similarly, reaction between $h^5C_5H_5F$ e-(CO),CH,CH=CHCH, and ClSO,NCO, conducted for 10 min also at 10[°], yielded 23% h⁵-C₅H₅Fe(CO)₂Cl and 37% h⁵-C₅H₅Fe(CO)₂-

CHCH(CH,)C(O)NHCH, after chromatography on alumina. Analyt ical data and physical properties of these and other new complexes prepared herein are provided in Table I.

(b) Preparation of **Metal-N-Acyl-N-chlorosulfonylamido** Complexes. To a solution of h^5 -C₅H₅Fe(CO)₂CH₂C(CH₃)=CH₂ $(3.5 \text{ g}, 15 \text{ mmol})$ in CH₂Cl₂ (50 ml) at *ca.* -40° was added ClSO₂. NCO (2.3 g, 16 mmol) in 16 ml of benzene at 25°. The mixture was stirred at approximately -40° for 15 min, after which time water $(\sim)10$ ml) was added. The organic layer was dried over MgSO₄ and filtered through Florisil. Solvent was then removed to give 2.6 g (47% yield) of crude h^5 -C_sH_sFe(CO)₂N(SO₂Cl)C(O)CH₂C(CH₃)=CH₂. The product was purified by chromatography on alumina using CHC1, eluent and crystallization from $CHCl₃$ -pentane.

(c) Cleavage of Metal-2-Alkenyl Bond and Formation of Metal-Chloro Complexes. Chlorosulfonyl isocyanate (0.85 **g,** 6.0 mmol) in 6 ml of benzene at 25° was added dropwise to a solution of $Mn({\rm CO})_s$ -CH₂CH=CHC₆H₅ (1.0 g, 3.2 mmol) in 25 ml of CH₂Cl₂ at -70° . The mixture was stirred for 10 min after which excess $CISO₂NO$ was decomposed with 10 ml of H_2O . The organic layer was dried over MgSO, and filtered through Florisil. Removal of the solvent afforded $Mn(CO)$, Cl (0.51 g, 71% yield).

Similarly, reaction between ClSO₂NCO and h^s -C_sH_sMo(CO)₃- $CH₂CH=CHC₆H₅$, conducted for 10 min at 5°, afforded 85% *h*⁵-

(12) M. L. H. Green and P. L. I. Nagy, J. Chem. Soc., 189 (1963).
(13) S. R. Su, Ph.D. Thesis, The Ohio State University, 1971.
(14) R. B. King, *Inorg. Chem.*, 2, 531 (1963).
(15) T. S. Piper and G. Wilkinson, J. Inorg.

 $(1956).$

(16) J. P. Bibler and **A.** Wojcicki, *J. Amev. Chem.* Soc., *88,* 4862 (1966).

(17) P. M. Treichel, R. L. Shubkin, K. **W.** Barnett, and D. Reichard, Inorg. Chem., **5,** 1177 (1966).

(18) J.-L. Roustan and C. Charrier, C. R. *Acad. Sci., Ser.* C., 268, 2113 (1969).

 $C_sH_sMo(CO)₃Cl$ after usual work-up followed by chromatography on alumina.

Reactions of Metal-2-Alkynyl Compounds with CISO, NCO. **Preparation of Metal-** Δ **³**-Pyrrolinone Complexes. A representative reaction, that of h^s -C_sH_sFe(CO)₂CH₂C=CCH₃ with ClSO₂NCO to give h^s -C_s H_s Fe(CO)₂C=C(CH₃)C(O)N(SO₂Cl)CH₂, is described in detail.

in CH,Cl, (30 m1)-benzene (15 ml) was added dropwise ClS0,NCO (6 mmol) in benzene (6 ml) and the resulting mixture was stirred for 30 min at 10° . Water (~10 ml) was then added to decompose excess ClSO,NCO, and the reddish orange organic layer was dried over $MgSO₄$. After filtration through a 3 \times 5 cm column of zeolite containing Florisil, the solution was evaporated to an oily residue. Addition of pentane furnished yellow-orange crystals (1.1 g). Further purification was effected by chromatography on Florisil (CHC1, eluent) and crystallization from CHCl₃-pentane; yield of h^5 -C₅H₅Fe-To a solution of h^5 -C₅H₅Fe(CO), CH₂C=CCH₃ (0.94 g, 4.1 mmol)

(CO)₂**C**=C**(CH₃**)**C(O)N(SO**₂**Cl)CH**₂</sub> 0.81 g (53%).

The synthesis of the other metal- Δ^3 -pyrrolinone complexes was effected similarly, with the following modifications in procedure.

 h^5 -C_sH_sFe(CO)₂C=C(C₆H_s)C(O)N(SO₂Cl)CH₂: starting with h^5 -C_sH_sFe(CO)₂CH₂C=CC₆H_s, benzene solvent, reaction temperature 25°, chromatography on alumina eluting with CH₂Cl₂ (57% yield).

 $Mn(CO)_{5}C=C(C_{6}H_{5})C(O)N(SO_{2}Cl)CH_{2}$: starting with $Mn(CO)_{5}C$ $CH_2CECC_6H_5$, CH_2Cl_2 solvent, reaction time 1 hr, no chromatography (7 2% yield).

 h^5 -C₃H₅Mo(CO)₃C=C(C₆H₅)C(O)N(SO₂Cl)CH₂: starting with h^5 -C_sH_sMo(CO)₃CH₂C=CC₆H_s, benzene solvent, reaction temperature 25", chromatography on alumina (85% yield).

*h*⁵-C₃H₅Fe(CO)₂C=C[CH₂Fe(CO)₂(h⁵-C₃H₃)]C(O)NHCH₂:
starting with h⁵-C₅H₃Fe(CO)₂CH₂C=CCH₂Fe(CO)₂(h⁵-C₅H₃), reaction time 40 min and temperature 25", chromatography on alumina (17% yield). $\frac{1}{2}$

Chlorosulfonyl isocyanate (0.85 g, **6.0** mmol) in 6 ml of benzene at 25° was added with stirring to a solution of h^s -C_sH_sFe(CO)₂CH₃ $(1.0 \text{ g}, 0.52 \text{ mmol})$ in 20 ml of CH_2Cl_2 at -25° . After several minutes the mixture was warmed up to 25° and stirred at that temperature for 1 hr. Excess CISO₂NCO was decomposed with H_2O (-10 ml) , the organic layer was dried over MgSO₄ and filtered, and solvent was removed *in vacuo.* Chromatography on alumina, eluting with pentane, led to a recovery of 0.85 g of h^s -C_sH_sFe(CO)₂CH₃. Attempted Reactions of Metal-Alkyl Compounds with CISO₂NCO. starting with

tion temperature

(b)NHCH₃:
 ${}^{\circ}C_{5}H_{3}$), reac-

with CISO₂NCO.

with CISO₂NCO.

of benzene at
 ${}^{\circ}e(CO)_{2}CH_{3}$

er several

d at that tem-

d with H₂O

f filtered, and
 ${}^{\circ}F(CO_{12}CH_{3}$.
 and not be the converted
 $\frac{1}{2}$ and converted
 $\frac{1}{2}$ and converted
 $\frac{1}{2}$ and converted
 $\frac{1}{2}$ and $\frac{1}{2}$
 $\frac{1}{2}$ and $\frac{1}{2}$
 $\frac{1}{2}$ and $\frac{1}{2}$
 $\frac{1}{2}$ and $\frac{1}{2}$
 $\frac{1}{2}$ and $\frac{1}{$

 $CH₂C₆H₅$ under similar conditions for 5 hr, followed by usual workup, gave 80% unreacted alkyl. An analogous treatment of h^5 -C_sH₅Fe- $(CO)[P(C_{6}H_{5})_{3}]CH_{3}$ with ClSO₂NCO in $CH_{2}Cl_{2}$ at 25° for 20 min led to isolation of 19% h^5 -C₅H₅Fe(CO)[P(C₆H₅)₃]Cl after chromatography on alumina. Attempted reaction between ClSO₂NCO and h^5 -C₅H₅Fe(CO)₂.

Attempted Reaction of h^5 -C_sH_sFe(CO)₂CH₂C=CCH₃ with C_6H_5NCO . A solution of the alkynyl (0.50 g, 2.2 mmol) in 25 ml of $CH₂Cl₂$ was treated with $C₆H₅NCO$ (0.7 g, 6 mmol) in 6 ml of benzene and the resulting mixture was stirred at 25" for 4 hr. Solvent was evaporated under reduced pressure and the residue was chromatographed on alumina. Elution with pentane gave 0.43 g of the unreacted alkynyl.

A solution of h^5 -C₅H₅Fe(CO)₂CHC(CH₃)₂C(O)N(SO₂Cl)CH₂ (0.65 g, 1.7 mmol) in 30 ml of CH₂Cl₂ at 25° was treated with $C_6H_5NH_2$ $(1.4 \text{ g}, 15 \text{ mmol})$ at -30° . The mixture was stirred for 30 min, after which the bulk of the solvent was removed to cause precipitation of $C_6H_5NH_3^+Cl^-$. The solid was filtered off and the concentrated solution was chromatographed on Florisil using CH₂Cl₂ eluent to afford 0.43 g (58% yield) of h^s -C_sH_sFe(CO)₂CHC(CH₃)₂C(O)N(SO₂NHC₆H_s)-
 $\frac{1}{6}$ N₁ Reactions of Metal-2-Pyrrolidone Complexes. (a) With Amines. $C_6H_5NH_3$ Cl . The solution was chromatograp
tion was chromatograp
0.43 g (58% yield) of *l*
CH₁.
 $h^5-C_5H_5Fe(CO)_2C$
obtained (68% yield) b
Similarly, the reac
(O)N(SO₂Cl)CH₂ and
vielded $h^5-C_5H_5Fe(CO)$

 $CH₂$. h^s -C₅H₅Fe(CO)₂CHCH(C₆H₅)C(O)N(SO₂NHC₆H₅)CH₂ was obtained (68% yield) by employing a strictly analogous procedure.

Similarly, the reaction between h^5 -C₅H₅Fe(CO)₂CHC(CH₃)₂C-

(O)N(SO₂Cl)CH₂ and a fourfold excess of $(C_2H_5)_2NH$ in CH₂Cl.

yielded h^s -C_sH_sFe(CO)₂CHC(CH₃)₂C(O)N[SO₂N(C₂H₅)₂]CH₂ (43% yield) after chromatography and crystallization from \overline{CH}_2Cl_2 -pentane

(1:3).

(b) With Alumina. h^5 -C_sH_sFe(CO)₂CHC(CH₃)₂C(O)N(SO₂Cl)-CH₂ (0.30 g) in *ca.* 5 ml of CH₂ Cl₂ was introduced onto a 2 × 15 cm alumina (10% H₂O) column. Elution with benzene afforded 0.055 g \overline{z}

a Measured at 70 eV; source temperature 150°. b Relative to m/e 159 ion being 100. e [M] = Mn(CO)₅.

Transition Metal-Carbon o-Bonded Complexes

(34% yield) of h^5 -C, H, Fe(CO), Cl, whereas elution with 10:1 CH₂Cl₂-THF gave 0.090 g (40% yield) of h^5 -C₅H₅Fe(CO)₂CHC(CH₃)₂C(O)- $NHCH_2$. Similarly, h^s -C_sH_sFe(CO)₂CHCH(C₆H_s)C(O)N(SO₂Cl)CH₂ C(yielded $42\% h^5$ -C₅H₅Fe(CO)₂Cl and $39\% h^5$ -C₅H₅Fe(CO)₂CHCH- $(C_6H_5)C(O)NHCH,$. (34% yield) of
THF gave 0.09
NHCH₂. Sim

(c) With Benzoyl Chloride. To a solution of $h^sC_5H_5Fe(CO)$,-CHC(CH₃)₂C(O)NHCH₂ (0.40 g, 1.4 mmol) and (C₂H₅)₃N (0.8 g, 8 mmol) in 40 ml of CH_2Cl_2 at -20° was added dropwise C_6H_5COCl (0.7 g, 5 mmol) in 10 ml of CH_2Cl_2 at 25°. The mixture was allowed to warm up to 25" and was stirred at this temperature for 43 hr. Solvent was then removed and the residue was chromatographed on alumina eluting with benzene. Evaporation to dryness and crystallization from CHCl₃-pentane afforded 0.18 g (33% yield) of deep

yellow h^5 -C₅H₅Fe(CO)₂CHC(CH₃)₂C(O)N(COC₆H₅)CH₂. Attempted Reactions **of** Metal-2-Pyrrolidone Complexes. (a)

With $H_2O.$ h⁵-C₅H₅Fe(CO)₂CHCH(C₆H₅)C(O)N(SO₂Cl)CH₂ (0.17 g), 20 ml of $H₂O$, and 30 ml of benzene were heated at reflux for 1.25 hr. The organic layer was dried and filtered, and the solvent was removed to give 0.14 g of the starting metal-pyrrolidone complex.

(b) With HCl. h^5 -C₅H₅Fe(CO)₂CHC(CH₃)₂C(O)N(SO₂Cl)CH₂ (0.20 g), 3 ml of 38% aqueous HCl in 10 ml of H₂O, and 20 ml of CH₂Cl₂ were stirred for 1 hr at 25°. Only the starting material (0.15 g) was obtained upon work-up. A similar treatment of h^5 -C_sH₅Fe-

(CO), CHC(CH₃), C(O)N(SO₂NHC₆H₅)CH₂ for 4.5 hr at 25° gave a trace amount of h⁵-C₅H₅Fe(CO), C1 and led to a recovery of 65% of the starting complex. Furthermore, only the starting material was

recovered when $h^{\mathsf{s}}\text{-}\mathrm{C}_{\mathsf{s}}\mathrm{H}_{\mathsf{s}}\mathrm{Fe(CO)}_{\mathsf{2}}\mathrm{CHC(CH}_{\mathsf{3}})_{\mathsf{2}}\mathrm{C(O)}\mathrm{NHCH}_{\mathsf{2}}$ was treated with 38% aqueous HCl in CH_2Cl_2 at reflux for 5 hr (73% recovery) or with gaseous HCl in CH_2Cl_2 at 25° (100% recovery).

(c) With KOH. h^5 -C₅H₅Fe(CO)₂CHC(CH₃)₂C(O)NHCH₂ (0.6 g) and KOH (0.65 g) in 30 ml of CH₃OH were stirred for 20 hr at 25 $^{\circ}$. Work-up of the reaction mixture afforded 58% of the starting pyrrolidone complex. A similar treatment of h^5 -C₅H₅Fe(CO)₂ -**CHC(CH₃)₂C(O)N(SO₂NHC₆H₅)CH₂ gave 64% of the unreacted** *I*

carbonyl.

(d) SO₂. A solution of h^5 -C₅H₅Fe(CO)₂CHC(CH₃)₂C(O)N- $\overline{\text{SO}_2\text{NHC}_6\text{H}_2\text{)}}\text{CH}_2$ (0.3 g) in *ca*. 10 ml of liquid SO₂ was kept at reflux for 3 hr. Removal of the $SO₂$ led to a quantitative recovery of the metal complex.

(e) I_2 . Attempted reaction between h^5 -C_sH_sFe(CO)₂-

 $CHC(CH_3)_2 C(O)NHCH_2$ (1.0 g, 3.5 mmol) and iodine (0.44 g, 1.7 mmol) in CH_2Cl_2 (40 ml) at 25° for 5.5 hr gave 86% of the starting pyrrolidone complex upon work-up.

(f) HgCl₂. After $h^s \text{-} C_s H_s Fe(CO)_2 \overline{CHC(CH_s)_2 C(O)NHC}$ (0.7 g, 2.4 mmol) and HgCl₂ (0.95 g, 1.7 mmol) in CH_2Cl_2 (50 ml) had been stirred for 70 hr at 25 $^{\circ}$, 67% of the metal carbonyl was recovered upon work-up.

(g) $P(C_6H_5)_3$. Attempted reaction between $h^5-C_5H_5Fe(CO)_2$.

 $CHC(CH_3)$, C(O)NHCH₂ (0.40 g, 1.4 mmol) and P(C₆H₅)₃ (0.40 g, 1.5 mmol) in 25 ml of THF at reflux for 7.5 hr afforded 60% of the unreacted dicarbonyl.

(h) Organic Halogen Compounds. A mixture of h^5 -C₅H₅Fe(CO)₂-

CHC(CH₃)₂C(O)NHCH₂ (0.50 g, 1.7 mmol), p-CH₃C₆H₄SO₂Cl (1.1 g, 6 mmol), and $(C_2H_s)_3N$ (1.2 g, 12 mmol) in 50 ml of CH_2Cl_2 was stirred at 25° for 28 hr. Work-up of the reaction mixture gave 0.37 g of the unreacted metal complex.

Similarly, h^5 -C_sH_sFe(CO)₂CHC(CH₃)₂C(O)NHCH₂ was recovered after treatment with $\text{BrCH}_2\text{COOC}_2\text{H}_5$ in the presence of $(\text{C}_2\text{H}_5)_3\text{N}$ in $CH₂Cl₂$.

Reactions **of** Metal-A'-Pyrrolinone Complexes. (a) With

Amines. h^5 -C₅ H_5 Fe(CO)₂C=C(CH₃)C(O)N(SO₂Cl)CH₂ (0.22 g, 0.59 mmol) and $\check{C}_6H_sNH_2^{''}(0.2 \text{ g}, 2 \text{ mmol})$ were stirred in 1:1 $CH₂Cl₂$ -benzene for 21 hr at 25°. Solvent was removed and the residue was chromatographed on alumina eluting with CHCl₃. Crystallization from THF-pentane gave 0.14 g (87% yield) of *h5-*

 C_5 H₂Fe(CO)₂C=C(CH₃)C(O)NHCH₂.

A similar reaction of 0.8 g (2 mmol) of h^5 -C₅H₅Fe(CO)₂- $\overline{C} = \overline{C}(\overline{CH}_3)C(O)N(SO_2Cl)CH_2$ with 1.1 g (12 mmol) of $C_6H_5NH_2$ in CH₂Cl₂ for 2.5 hr afforded 0.35 g (38%) of h^s -C_sH_sFe(CO)₂-

 C =C(CH₃)C(O)N(SO₂NHC₆H₅)CH₂ after chromatography on alumina

Yasuhiro Yamamoto and Andrew Wojcicki

 $\frac{(1 \text{ CH}_2 \text{Cl}_2 - \text{[benzene and CH}_2 \text{Cl}_2 - \text{[benzene and CH}_2 \text{Cl})^2 \text{[1]}}{1 - (1 \text{[1]} \text{[1$ (benzene and CH_2Cl_2 eluents) and crystallization from CH_2Cl_2 pentane. An analogous sulfonamide, h^5 -C_sH_sFe(CO)₂C=C(CH₃)- $C(O)N[SO_2N(C_2H_5)_2]CH_2$, was obtained (60% yield) from $h^5-C_5H_5Fe$ $(CO)_2 \stackrel{C=CC(H_3)C(O)N(SO_2Cl)CH_2}{\longrightarrow} (0.1 \text{ g}, 0.3 \text{ mmol})$ and $(C_2H_3)_2$ NH (5 ml) in 5 ml of CH_2Cl_2 (10°, 3 hr) after chromatography on alumina $(2:1 \text{ CH}_2 \text{Cl}_2$ -benzene eluent) and crystallization from benzenerew Wojcicki
 $\frac{\text{CH}_2\text{Cl}_2-\text{C}(\text{CH}_3)}{\text{C}=\text{C}(\text{CH}_3)}$,
 $\text{om } h^5\text{-C}_s\text{H}_s\text{Fe}$
 $\text{Ind } (\text{C}_2\text{H}_s)_2\text{NH}$
 hyp on aluminum
 enzene--
 $\text{H}_s\text{O}(\text{O})\text{N}$,
 $\text{in } \text{CH } \text{Cl}$

pentane. However, reaction between $Mn(CO)$, $\dot{C} = C(C, H)C(O)N$ - $(SO_2Cl)CH_2$ (0.45 g, 1.0 mmol) and $(C_2H_5)_2NH$ (5 ml) in CH_2Cl_2 (25 ml) for 3 hr at 25", followed by chromatography on Florisil (benzene and CH₂Cl₂ eluents) and crystallization from CH₂Cl₂-

pentane, afforded $\text{Mn(CO)}_5 \text{C} = \text{C}(C_6 H_5) \text{C}(O) \text{NHCH}_2$ (0.25 g, 71%) as yellow crystals.

(b) With CH₃OH in Presence of Base. A solution of h^5 -C₅H₅Fe- $(CO)_2$ C=C(CH₃)C(O)N(SO₂Cl)CH₂ (0.25 g, 0.67 mmol) and $(C_2H_5)_3N$ (1 ml) in 25 ml of CH_3OH was maintained at reflux for 3 hr. Removal of solvent and chromatography on Florisil (CHCI, eluent) gave 0.09 g (50% yield) of h^5 -C₅H₅Fe(CO)₂C=C(CH₃)C(O)NHCH₂. The same product was obtained (81% yield) from reaction of *h5* -

 $C_6H_5Fe(CO), C=C(CH_3)C(O)N(SO, Cl)CH$, (1.0 g, 2.7 mmol) with $CH₃ONa$ (21.7 mmol)-CH₃OH (50 ml) for 2 hr at 25°.

(0.60 g, 1.6 mmol) and NaBH_4 (0.65 g, 17 mmol) in 25 ml of THF (c) With NaBH₄. h^5 -C₅H₅Fe(CO)₂C=C(CH₃)C(O)N(SO₂Cl)CH₂ containing 2 ml of CH_3OH were stirred at $\sim 60^\circ$ for 4.5 hr. Excess NaBH₄ was decomposed with CH₃OH, solvent was removed, CHCl₃ was added to the residue, and the resulting solution was washed with H_2O . The organic layer was dried (MgSO₄) and filtered. Chromatography on alumina (CHCl₃ eluent) yielded h^5 -C_sH_sFe(CO)₂-(c) With NaBH₄, h^2 -C₅H₅Fe(CO)₂C=C(CH₃)C(O)N(SO₂C1)CH₂
(0.60 g, 1.6 mmol) and NaBH₄ (0.65 g, 17 mmol) in 25 ml of THF
containing 2 ml of CH₃OH were stirred at ~60° for 4.5 hr. Excess
NaBH₄ was decomp containing 2 ml of CH₃OH were st
NaBH₄ was decomposed with CH₃
was added to the residue, and the r
H₂O. The organic layer was dried
matography on alumina (CHCl₃ elsember contained and the residue of $C=C(CH_3)C(O)NH$

 $\text{C} = \text{C}(\text{CH}_3)\text{C}(\text{O})\text{NHCH}_2$ (0.32 g, 74%).

(d) With $\text{Na}[h^5\text{-}C_5H_5\text{Fe(CO)}_2]$. $h^5\text{-}C_5H_5\text{Fe(CO)}_2C=C(CH_3)C$. treated with $\text{Na}[h^5\text{-}C_5H_5Fe(CO)_2]$ (3.0 mmol) in THF (15 ml) at 10[°]. The mixture was stirred for 2.5 hr, solvent was removed, and the residue was chromatographed on alumina. Elution with benzene gave a small amount of $[h^5-C_8H_5Fe(CO)_2]_2$ and elution with CHCl₃

afforded (0.34 g, 77% yield) h^5 -C₅H₅Fe(CO)₂C=C(CH₃)C(O)NHCH₂. (e) With $C_6H_5CH_0$ in Presence of KOH. A suspension of h^5 -

 $C_5H_5Fe(CO)_2Ce(CH_3)C(O)N(SO_2Cl)CH_2$ (1.2 g, 3.2 mmol) in 40 ml of CH_3OH was treated with KOH (3.0 g, 54 mmol) at 25°. To the resulting deep yellow solution was added 0.50 g (4.7 mmol) of C_6H_5CHO and the mixture was stirred for 3.5 hr at 55° . Solvent was removed, the residue extracted with $CH₂Cl₂$, the extract washed with $H₂O$, and the organic layer dried (MgSO₄) and filtered. Chromatography on alumina gave 0.13 g (25% yield) of $[h^5-C_5H_5Fe(CO)_2]_2$ was added to the residue, and the resulting solution was wash
 H_2O . The organic layer was dried (MgSO₄) and filtered. Chine

matography on alumina (CHCl₃ eluent) yielded h^s -C₅H₅Fe(C
 $C=C(CH_3)C(O)NHCH_1$ (0.32 g *I* **I** matography on alumina (CHCl₃ eluent) yield
 $\frac{1}{2}C(CH_3)C(O)NHCH_2 (0.32 g, 74%).$

(d) With Na[h⁵-C₅H₅Fe(CO)₂]. h⁵-C₅H₅O)

(d) With Na[h⁵-C₅H₅Fe(CO)₂]. h⁵-C₅H₅O)

(b)N(SO₂CI)CH₂ (0.60 g, 1.6

 $C=C(CH₃)C(O)NHC=CHC₆H₅ (CH₂Cl₂-THF element).$ (f) With Benzoyl Chloride. A solution of h^5 -C_sH_sFe(CO)₂-

 $\text{C=C(CH}_3\text{)C(O)NHCH}_2$ (0.60 g, 2.2 mmol), $\text{C}_6\text{H}_5\text{COCl}$ (1.3 g, 9.2) mmol), and $(C_2H_s)_3N$ (1.7 g, 17 mmol) in CH_2Cl_2 (30 ml) was stirred for 55 hr at 25". Water was added and the organic layer was then dried $(MgSO₄)$ and filtered. Chromatography on alumina using CHCl₃-pentane (2:1) eluent gave h^5 -C₅H₅Fe(CO)₂C=CHNHC[OC(O)- $C = C(CH_3)C(O)NRCH$
mmol), and $(C_2H_3)_3N$
stirred for 55 hr at 25⁶
then dried (MgSO₄) an
 $CHCl_3$ -pentane (2:1) e
 C_6H_5]=CCH₃, which v
74% yield).

 C_6H_5 = CCH₃, which was recrystallized from CHCl₃-pentane (0.59 g, 74% yield).

Attempted Reactions of Metal- Δ^3 -Pyrrolinone Complexes. (a) $h^5\text{-}C_5H_5Fe(CO)_2C=C(CH_3)C(O)N(SO_2Cl)CH_2$ with H_2O , C_6H_5OH , and **HBF₄.** By using a procedure strictly analogous to that employed for the corresponding metal-2-pyrrolidone complexes, 70% of the starting material was recovered after it had been treated with H_2O in $CH₂Cl₂$ -benzene at reflux. compound (0.35 g) and C_6H_5OH (0.2 g) in CH_2Cl_2 (20 ml) at 25° for 2 hr led to a recovery of 0.17 g of the metal complex. Likewise, treatment of the title compound $(0.7 g)$ in 30 ml of acetic anhydride with 4 ml of 48% HBF₄ at 10° , followed by usual work-up, afforded a 70% recovery. Andrew Wojcicki

om CH₂Cl₂
 O_1 , $C_c = C(CH_3)$,
 1 from h^s -C₄H₄, h
 1 from h^s -C₄H₄, h
 2 from h^s -C₄H₄, h
 m bin CH₄Cl₄), NH
 m bin CH₄Cl₄)
 m mension of h^s -C₄H₄Fe-
 Similarly, reaction between the title

(b) $Mn(CO)$ _s $C=C(C_6H_5)C(O)N(SO_2Cl)CH_2$ with CH₃OH and $p\text{-CH}_3\text{C}_6\text{H}_4\text{SO}_2\text{Na}$. The manganese complex was recovered unchanged after treatment with $CH₃OH$ at reflux for 3 hr. Similarly, reaction between the title compound and a slight excess of $p\text{-CH}_3\text{C}_6\text{H}_4\text{SO}_2\text{Na}$. $2H_2O$ in H_2O (5 ml)- CH_2Cl_2 (20 ml) for 18 hr at 25° led to a recovery of the unreacted carbonyl (60%).

(c) $h^5C_5H_5Fe(CO)_2C=C(CH_3)C(O)NHCH_2$ with KOH, HCl,

Transition Metal-Carbon σ -Bonded Complexes

and ClSO₂NCO. Attempted reaction between the title compound (0.2 g) and KOH (1.2 g) in 40 ml of $CH₃OH$ at reflux for 1 hr gave the starting complex (0.15 g) upon work-up. Treatment of the same complex (0.2 g) with aqueous HCl (2 ml, 38%) in CH₂Cl₂ (40 ml)-H,O (8 ml) at 45" afforded a similar result (65% recovery). *h5-*

 $C_5H_5Fe(CO)_2C=C(CH_3)C(O)NHCH_2$ was also recovered (50%) after an attempted reaction with a fivefold excess of ClSO₂ NCO in CH₂Cl₂benzene at 25".

Reactions **of Metal-N-Acetyl-N-(chlorosulfonyl or sulfamoy1) amido Complexes. (a)** With **Primary** Amines. To a solution of *h5* - $C_5H_5Fe(CO)_2N(SO_2Cl)C(O)CH_2C(CH_3)=CH_2 (0.90 g, 2.4 mmol)$ in 40 ml of CH_2Cl_2 was added 0.9 g (1 mmol) of aniline. The mixture was stirred at 0° for 1.5 hr and then chromatographed on alumina. Elution with CHCl₃, removal of the solvent, and crystallization from CH₂Cl₂-pentane at -15° afforded h^5 -C₅H₅Fe(CO)₂N(SO₂NHC₆H₅)- $C(O)CH₂CCH₃$ = CH₂ (0.47 g, 46% yield) as reddish orange crystals.

CH₂ was obtained (39% yield) from reaction of h^5 -C_sH₅Fe(CO)₂N- $(SO_2Cl)C(O)CH_2C(CH_3)=CH_2$ and $p\text{-}CH_3C_6H_4NH_2$ in CH_2Cl_2 . However, only the unreacted complex was isolated (96%) after treatment of *h*⁵-C₃H₃Fe(CO)₂N(SO₂Cl)C(O)CH₂C(CH₃)=CH₂ with a two-
fold excess of *p*-NO₂C₆H₄NH₂ in CH₂Cl₂-benzene at 25⁶ for 15 hr. $\text{Similarly, } h^{\text{s}}\text{-C}_{\text{s}}\text{H}_{\text{s}}\text{Fe(CO)}_{\text{2}}\text{N(SO}_{\text{2}}\text{NHC}_{\text{6}}\text{H}_{\text{4}}\text{CH}_{\text{3}}-p)\text{C(O)CH}_{\text{2}}\text{C(CH}_{\text{3}})=$

(b) With Other Bases. h^5 -C_sH_sFe(CO)₂N(SO₂Cl)C(O)CH₂¹ (CH₃)=CH₂ (0.5 g, 1.3 mmol) and (C₂H₅)₃N (0.8 g, 8 mmol) in 30 ml of CH₃OH were stirred at ~60° for 4.5 hr. Solvent was removed and chromatography on alumina (benzene eluent) afforded *0.075* g (32% yield) of $[h^5 \text{-} C_5 H_5 Fe(CO)_2]_2$. No reaction was observed when $CH₂Cl₂$ was used as the solvent at 25°.

with *ca.* fivefold excess NaOH in ethanol at 25" for 1 hr yielded $[h^5-C_sH_sFe(CO)_2]_2$ (68%) after chromatography on alumina. Treatment of h^5 -C₅H₅Fe(CO)₂N(SO₂Cl)C(O)CH₂C(CH₃)=CH₂

CHCl₃ solution (100 ml) of h^s -C_sH_sFe(CO)₂N(SO₂Cl)C(O)CH₂C $(CH_3)=CH_2$ (1.9 g, 5.1 mmol) at 25° for 2 hr. Solvent was then removed and the reddish brown residue was chromatographed on alumina. Elution with 1:1 benzene-pentane afforded on evaporation 0.67 g of h^5 -C_sH_sFe(CO)₂Cl. Elution with pure benzene furnished an additional 0.05 g of h^5 -C_sH_sFe(CO)₂Cl (66% total yield). CH_2Cl_2 eluted trace starting material and then $CHCl_3$ removed $CH_2=$ $C(\tilde{C}H_a)CH_2CONH_2$ (0.34 g, 67% yield), which was recrystallized from CHCl₃-pentane; mp $117-118^\circ$ (lit.¹⁹ mp 119-120°). Mass spectrum (m/e) : 99. Nmr (CDCl₃ solution): τ 8.18 **(s)** (CH₃), 7.02 *(s)* $(-CH_2^-)$, 5.05 *(c)* $(=CH_2)$, 4.5-3.7 *(br)* (NH_2) . **(c) With Gaseous** HCI. Hydrogen chloride was passed through a

Results

Synthesis and Characterization **of** Cycloaddition and

Insertion Products. Three types of new complexes were prepared *via* reaction of CISO₂NCO with transition metal compounds containing M-C σ bonds. They are (1) metal 2pyrrolidones (I; complexes **1, 2,** and **8** in Tables I and 111), (2) metal Δ^3 -pyrrolinones (II; complexes 10, 11, 15, 18, and **19** in Tables I and 111), and (3) metal **N-acyl-N-chlorosulfonyl**amides (111; complex **21** in Tables I and 111). Complexes of types I and II are derived from cycloaddition of $CISO₂NCO$

to the a-bonded hydrocarbon fragment which is accompanied by 1,2 metal migration, whereas those of type I11 result from insertion of $CISO₂NCO$ into the M-C bond. With the exception of $\bf{8}$ and $\bf{15}$ which contain $X = H$, all of the products have been isolated as the *N*-chlorosulfonyl $(X = SO_2Cl)$ derivatives. 2-Alkenyl complexes of h^5 -C₅H₅Fe(CO)₂

(19) A. Mooradian and **J.** B. Cloke, *J.* Amer. Chem. *SOC.,* 68, *I85* **(1946).**

furnish I or III depending on whether a methyl group is absent or present on carbon *2* of the allyl fragment, whereas those of h^5 -C₅H₅Mo(CO)₃ and Mn(CO)₅ yield the corresponding chlorides through cleavage of their respective M-C bonds. Transition metal-2-alkynyl complexes tested afford II exclusively. The alkyl compounds h^5 -C₅H₅Fe(CO)₂R $(R = CH₃$ and $CH₂C₆H₅$) do not react with $CISO₂NCO$ at ambient temperatures, whereas h^5 -C₅H₅Fe(CO)₂[P(C₆H₅)₃] - $CH₃$ affords the corresponding chloride as the only isolable product. The isolated complexes were characterized by infrared and 'H nmr spectroscopy, various aspects of their chemical behavior, and, where stability permitted, elemental analyses (Table I). Unstable products were converted to readily analyzable derivatives.

All of the cycloaddition and insertion products, as well as their derivatives, are readily soluble in chloroform, acetone, and benzene, moderately soluble in methanol and ethanol, and sparingly soluble in saturated hydrocarbons. With the exception of 1 and 2 $(I; X = SO₂Cl)$, complexes of types I and I1 are very stable in the solid but decompose gradually in solution. **1** and **2** show considerable decomposition after exposure to air for several hours at 25[°]. Complexes of type III have somewhat lower stability than those of types I or II. All complexes, except those of manganese **(19** and **20),** decompose or melt with decomposition upon heating. **19** and **20** undergo sublimation at *ca.* 180 and 150", respectively.

A high degree of stability of I1 is reflected also in the mass spectrum of **19,** summarized in Table 11. Sequential loss of carbon monoxide may be noted, and only after all five carbonyls have been removed is there any appreciable fragmentation of the Δ^3 -pyrrolinone ring. A similar behavior was observed recently for metal-sultone (but not metalsultine) complexes derived from the 2-alkynyls and SO_3 .^{4c}

in this investigation are presented in Table 111. Since the assignment of structure for the three classes of compounds largely rests on spectroscopic evidence, particular attention here focuses on the data which most decisively differentiate among various possible rational formulations. The infrared and ¹H nmr spectra of the complexes prepared

Considering first the complexes of type I, it is to be noted that the ¹H nmr spectra rule out insertion of $CISO₂NO$ into the Fe-C bond either with or without an accompanying **1,3** allylic rearrangement. Accordingly, there is a relatively large internal chemical shift (0.17, 0.43, and 0.16 ppm) for the two nonequivalent CH₃ resonances of 1, 3, and 6, which contrasts with a typical separation found in complexes containing the $-CH_2CH=C(CH_3)_2$ fragment.²⁰ Moreover, the unique CH proton in these same complexes absorbs at a considerably higher field $(7 \sim 7.6 - 7.0)$ than that in various compounds containing -CH₂CH=C(CH₃)₂ or -C(CH₃)₂CH= $CH_2(\tau \leq 5)$.^{8a,b,21}

The values of $v_{\text{C}\equiv\text{O}}$ for complexes of type I, listed in Table 111, are similar to those reported for the products of cycloaddition between $(CN)_2$ C=C(CN)₂ and h^5 -C₅H₅Fe(CO)₂- $CH_2C(R'')=C(R)R'$ of general formula h^5 -C₅H₅Fe(CO)₂-

 $C(R'')C(R)(R')C(CN)_2C(CN)_2CH_2$ *(ca.* 2020 and 1970 cm⁻¹, CH_2Cl_2 solution)¹³ and for various alkyls $h^5 \text{-} C_5H_5Fe(CO)_2$ -R. l5 **3 l6** They are, therefore, entirely consistent with the presence of **an** Fe-C(alky1) bond therein.

When not obscured by other, overlapping resonances, the $CH₂$ proton signals are observed at τ *ca.* 6.5–6.0, which would

(21) D. A. Ross, Ph.D. Thesis, The **Ohio** State University, 1970.

⁽²⁰⁾ This separation is of the order \sim 0.00-0.08 ppm for [M]-
CH₂CH=C(CH₃)₂, where [M] = h⁵-C₅H₅Fe(CO)₂, h⁵-C₅H₅Mo(CO)₃,
h⁵-C₅H₅W(CO)₃, and h⁵-C₅(CH₃)₅Fe(CO)₂, and for their Ssulfinates.8b,13,21

Transition Metal-Carbon o-Bonded Complexes

appear to be too far downfield for a methylene group bonded to iron (e.g., τ 7.9-7.6 for several h^5 -C₅H₅Fe(CO)₂CH₂C(R^{''})= $C(R)R'$ complexes).^{8b} On this basis we consider improbable the two structures derived from (2 + 2) cycloaddition, *viz.,*

$h^5\text{-C}_5\text{H}_5\text{Fe(CO)}_2\text{CH}_2\overleftarrow{\mathrm{CHN(X)C(O)C}}(R)R'$ and $h^5\text{-C}_5\text{H}_5\text{Fe(CO)}_2$ -

 $CH_2CHC(O)N(X)C(R)R'$. Further evidence against such β lactam formulations is provided by the values of $v_{C=0}$. The X = H complexes prepared in this work **(6-8)** absorb at considerably lower frequencies (1695-1678 cm^{-1}) than do the organic β -lactams.²² However, their $\nu_{C=0}$ are close to that reported for $\overline{\text{CH}_2\text{CH}_2\text{NHC}(O)}\text{CH}_2$ (1706 cm⁻¹, CCl₄ solution).²³

The position of the CH₂ proton resonance $(\tau \text{ ca. } 6.5-6.0)$ provides support for the bonding of the carbonyl carbon to the most substituted carbon of the 2-pyrrolidone ring (struc-
ture I). The alternative ring structure, $[M\overline{CHC(R)(R')N(X)}$ that reported for $\overline{CH_2CH_2NHC(O)CH_2}$ (1706 cm⁻¹, CCl₄
solution).²³
The position of the CH₂ proton resonance (τ ca. 6.5-6.0)
provides support for the bonding of the carbonyl carbon to
the most substituted carb

pyrrolidones of the type $\overline{CH_2CH_2C(O)N(X)CHR}$ (X = H or R') show the CH(R)N proton resonance in the range τ 6.8-6.5 and the CH₂CO proton resonance at τ ca. 8.2-7.7.²⁴ In support of our assignment of structure I is also a higher field proton signal of CHCO *(T* 8.2-7.3) than of CH2N *(T* 6.85- 6.40) in the spectrum of **8.** It is to be noted further that when $R \neq R'$, diastereomers are possible for compounds containing such a 2-pyrrolidone ring. However, the available spectroscopic (nmr and infrared) data provide no evidence supporting presence of isomers.

The assignment of structure II is supported by similarities in the values of $v_{\text{C}=0}$ between the compounds in question (see Table 111) and those derived from the cycloaddition of SO_2 ^{3a} SO_3 ^{4c} and $(CN)_2C=C(CN)_2$ ^{6,13} (EN) to the same iron 2-alkynyls. The latter iron-vinyl products, $h^5C_5H_5Fe$ - $(CO)₂$ C=C(R)(EN)CH₂, absorb at 2039-2026 and 1990-1972 cm⁻¹ in CHCl₃ or CH₂Cl₂ solution. The position of $v_{C=0}$ in complexes II also supports the formulation of the ring as a Δ^3 -pyrrolinone. Organic Δ^3 -pyrrolinones show appreciably lower $v_{C=0}$ than the 2-pyrrolidones because of w the CH(R)N proton resonance

1 the CH₂CO proton resonance

t of our assignment of structu

signal of CHCO (τ 8.2-7.3) if

in the spectrum of 8. It is to
 $R \neq R'$, diastereomers are possessing and a 2-pyrrolidone r that reported for CH₂CH₂NHC(O)CH₂ (1706 cm⁻¹, CCl₄

Solution).²³

The position of the CH₂ proton resonance (τ *ca.* 6.5-6.0)

The position of the CH₂ proton resonance (τ *ca.* 6.5-6.0)

provides supp C(O)NHCH₂ and CH=CHC(O)NHC(CH₃)₂ absorb at 1670²⁵ and 1690, 1660 cm^{-1} ,²³ respectively. This is to be compared with $v_{C=0}$ of 1680-1640 cm⁻¹ for complexes 14, 15,

and **20.** In the ¹H nmr spectra of 10-17, the C_5H_5 protons show resonances $(\tau 5.30-4.97)$ which are very similar to those recorded for the analogous iron-vinyl complexes derived from SO₂,^{3a} SO₃,^{4c} C₆H₅NSO,⁵ and $\text{(CN)}_{2}\text{C}=\text{C}(\text{CN})_{2}^{6}$,¹ $(\tau 5.26 - 4.80)$. The signals for the CH₂ protons in II are observed at *T* 6.22-4.69, in agreement with the absence of the M-CH₂ bonding^{8b} such as, for example, in $[M]CH_2$ - $C=C(R)C(O)NX.$ These resonances compare well with those $(7.5.92 - 5.88)$ reported for the organic Δ^3 -pyrrolinones $\text{C}(CH_3)=\text{C}(CH_3)\text{C}(O)$ NHCHR (R = H and CH₂C₅H₅).²⁵ In

Vol. I, Interscience, **New** York, **N.** Y., **1967,** p **70;** (b) Sadtler **NMR** Spectra **818M** and **7595M. (24)** (a) F. A. Bovey, **"NMR** Data Tables **for** Organic Compounds,"

Ann. Chem., **654, 165 (1962). (25)** H. Plieninger, H. Bauer, and A. **R.** Katritzky, *JustusLiebigs*

 $[M]C=C(R)N(X)C(O)CH₂$, which would result from the alternative mode of cycloaddition of $CISO₂NCO$ to the 2alkynyl fragment, the $CH₂$ resonance might be expected to occur at higher fields by analogy with the trends observed and already discussed for the 2-pyrrolidones. It is also noteworthy that the signals obtained for the $CH₂N$ protons in complexes I1 are fairly broad and, with the exception of **13,** no splitting due to coupling of the proton spins within $CH_3C=CCH_2N$ could be discerned. In 13, $J_{CH_3C=CCH_2N}$ = 1.5 Hz, in agreement with the values reported for other related cyclic metal-vinyl complexes.^{3a,4c},¹³

A salient feature in the infrared spectra of complexes 111 is their high $v_{\text{C}} = 0$ (e.g., 21 and 22: 2075, 2028 and 2065, 2023 cm^{-1} , respectively), which compares well with that observed for h^5 -C₅H₅Fe(CO)₂X having a substantially polar Fe-X bond, e.g., $X = Cl$, 26 NCS, 27 or NCO.²⁸ These frequencies militate against structures containing M-C **u** bonds and suggest insertion of CISO₂NCO to give h^5 -C₅H₅Fe(CO)₂ - $[{\rm (CISO_2NCO)CH_2C(CH_3)=CH_2}].$ In support of such a formulation are the nmr spectra of **21-23** which show an intact methallyl moiety. Two structures derived from the insertion merit close scrutiny: h^5 -C₅H₅Fe(CO)₂N(X)C(O)CH₂C- (CH_3) =CH₂ and h^5 -C₅H₅Fe(CO)₂C(O)N(X)CH₂C(CH₃)=CH₂. The former receives our preference, since a variety of ironcarboxamido complexes of the type h^5 -C₅H₅Fe(CO)₂C(O)- $N(R)R'$ have been shown to exhibit $v_{C=0}$ at 2022-2015 and 1975-1959 cm-' *,29* which are considerably lower than the absorptions of **21-23.** The most definitive evidence for structure 111 comes from reaction of **21** with gaseous HC1 which affords $CH_2=C(CH_3)CH_2CONH_2$ and $h^5-C_5H_5Fe(CO)_2$ -C1 (eq 3).

 $21 + 2HCl \rightarrow h^5-C_5H_5Fe(CO)_2Cl + CH_2=C(CH_3)CH_2COMH_2 +$ $SO_2Cl_2(?)$ (3)

Reactions **of** Cycloaddition and Insertion Products and Their Derivatives. The chemistry of all three classes of complexes has been investigated with particular attention being directed at (1) reactions of the newly formed ligands and (2) cleavage of the M-C bond. These will be now considered in turn.

Reactions involving the 2-pyrrolidone ring of complex 1 and the Δ^3 -pyrrolinone ring of complex 10 are summarized in Schemes I and 11, respectively. Complex **1** is readily transformed to **3** upon treatment with aniline and to **5** upon reaction with diethylamine. Similarly, reaction of **2** with aniline affords **7.** Analogous sulfonamides, **12** and **13,** were prepared from the Δ^3 -pyrrolinone complex 10. However, the formation of **12** required a 6: 1 aniline:complex ratio in the reaction. A lower, *cu.* 3: 1, ratio yields the unsubstituted A3-pyrrolinone, **14.** Similarly, **19** affords the unsubstituted **20** on being treated with diethylamine. No further study was conducted with a view to elucidating the duality of behavior of the N-chlorosulfonyl derivatives in these reactions.

Attempted chromatography of **1** or **2** on alumina containing 10% H_2O afforded the corresponding unsubstituted 2pyrrolidones, 6 and 7, as well as $h^5 \text{--} C_5H_5Fe(CO)_2Cl$. Complex **8** very likely has a similar N-chlorosulfonyl precursor, although no attempt was made at isolation of the latter from

⁽²²⁾ Several fused β -lactams show $v_{\text{C}=0}$ at 1760-1750 cm⁻¹
(CHCl₃ solution); see, for example, L. A. Paquette, M. J. Broadhurst,
C. Lee, and J. Clardy, J. Amer. Chem. Soc., 94, 630 (1972); L. A.
Paquette and M

Methuen, London, **1968,** p **164. (23) L.** J. Betlamy, "Advances in Infrared Group Frequencies,"

⁽²⁶⁾ T. **S.** Piper, F. **A.** Cotton, and G. Wilkinson, *J. Inorg. Nucl. Chem.,* **1, 165 (1955).**

⁽²⁷⁾ T. **S.** Sloan and **A.** Wojcicki, *Inorg. Chem., 7,* **1268 (1968). (28) R.** J. Angelici and L. Busetto, *J. Amer. Chem. Soc.,* **91,** ' **3197 (1969).**

⁽²⁹⁾ (a) L. Busetto and **R.** J. Angelici, *Inorg. Chim. Acta,* **2, 391 (1968);** (b) W. Jetz and **R. J.** Angelici, *J. Organometal. Chem.,* **35, C37 (1972);** (c) **R.** B. King, *J. Amer. Chem. SOC.,* **85, 1918 (1963).**

Scheme I

Scheme I1

the reaction of h^5 -C₅H₅Fe(CO)₂CH₂CH=CHCH₃ with ClSO₂-NCO.

In contrast to the chromatographic behavior of the above *2* pyrrolidone compounds, the Δ^3 -pyrrolinone complex 10 is stable toward $Al_2O_3-H_2O$. Its unsubstituted derivative, 14, can be obtained, however, by treatment of 10 with such bases as $C_6H_5NH_2$ (low aniline: complex ratio), CH_3ONa in CH₃OH, (C_2H_5) ₃N in CH₃OH, NaBH₄, or Na[h^5 -C₅H₅Fe- $(CO)₂$, but not with H₂O, even on heating, or with C₆H₅OH in CH_2Cl_2 . Unexpectedly, complex 15, rather than its Nchlorosulfonyl analog, was obtained directly from reaction of h^5 -C₅H₅Fe(CO)₂CH₂C \equiv CCH₂Fe(CO)₂(h^5 -C₅H₅) and version either during the reaction or during work-up is not rolidone and pyrrolinone complexes show a characteristic ν_{NH} band at 3250-3170 cm⁻¹, as do their organic counterparts.^{25,30} ¹⁶

the reaction of $h^s \text{·}C_sH_sFe(CO)_2CH_2CH=CHCH_3$ with ClSO₂. Reaction of 6 with C_6H_sCOCl in the pro-

NCO.

NCO.

In contrast to the chromatographic behavior of the above 2

pyrrolidone compounds, the Δ^3 -pyrrolin CISOzNCO. The reason for this facile NSO,Cl-to-NH con- however, we observed no reaction between **6** and p-CH3C6 obvious to us at present. All of the unsubstituted pyr-
rolidone and pyrrolinone complexes show a characteristic Treatment of 10 with KOH and benzaldehyde leads to the

(30) L. J. Bellamy, "The Infrared Spectra of Complex Molecules," (31) The imide structure was assigned tentatively and, as it turns Wiley, New York, N. Y., 1958, pp 206-208. out, incorrectly to complex 16 in ref 11a.

Reaction of 6 with C_6H_5COCl in the presence of $(C_2H_5)_3N$ yields the imide **9.** In contrast, the benzoyl moiety of C,H,COCl attacks the carbonyl oxygen of **14** affording complex 16. This structure is supported by the nmr spectrum which shows a signal (relative intensity 1) at *7* 3.81, ruling out the imide formulation h^5 -C₅H₅Fe(CO)₂C=C(CH₃)C(O)- $N(COC₆H₅)CH₂.³¹$ The formation of 16 in the foregoing reaction finds some analogy in the synthesis of $\text{CH}=\text{C}(\text{CH}_3)\text{C}(\text{CH}_3)=\text{C}(\text{OSO}_2\text{C}_6\text{H}_5)$ NH from $\text{C}(\text{CH}_3)=$ $\overline{C(CH_3)C(O)NHCH_2}$ and $C_6H_5SO_2Cl \cdot py.^{25}$ Unexpectedly, H_4SO_2Cl in the presence of $(C_2H_5)_3N$ or between 14 and $CISO₂NO$.

isolation of $[h^5 \text{-} C_5H_5Fe(CO)_2]_2$ and a complex which is formulated as **17.** However, an alternative, hydroxy structure,

 h^5 -C₅H₅Fe(CO)₂C=C(CH₃)C(OH)=NC=CHC₆H₅, cannot be completely dismissed on spectroscopic grounds. The broad absorption centered at 3395 cm^{-1} is suggestive of strong molecular association *via* hydrogen bonding in the solid.32 It is relevant that a strictly analogous reaction of $\widehat{C(CH_3)}$ = $\overline{C(CH_3)C(O)NHCH_2}$ with C₆H₅CHO affords $\overline{C(CH_3)}=C(CH_3)$ - $\overline{C(O)NHC}$ =CHC₆H₅, also formulated as a Δ^3 -pyrrolinone in the solid. 25

Thus, in summary, apart from a couple of reactions, the foregoing results indicate that the chemical behavior of the 2 pyrrolidone and Δ^3 -pyrrolinone rings in these metal complexes does not significantly differ from that of their strictly organic analogs.

In sharp contrast to the behavior of the pyrrolidone and pyrrolinone complexes, the organic chemistry of **21** does not appear to be nearly as extensive. Complex **21** can be transformed to 22 and 23 upon treatment with $C_6H_5NH_2$ and *p*- $CH_3C_6H_4NH_2$, respectively, but it does not react with the less basic $p\text{-}NO_2C_6H_4NH_2$. Attempted reactions of 21 with NaOH or with $(C_2H_5)_3N$ in CH₃OH led to the isolation of $[h^5-C_5H_5Fe(CO)_2]_2$ instead of the anticipated $h^5-C_5H_5Fe$ - $(CO)₂NHC(O)CH₂C(CH₃)=CH₂.$

A number of attempts were made at scission of the M-C bond in complexes I. Thus, **1** and **3** were treated with aqueous HC1 at 25", *6* with aqueous HC1 at reflux and gaseous HC1 at 25", **3** and **6** with KOH in CH30H, **3** with *SOz* at reflux, and 6 with HgCl₂ at 25 $^{\circ}$ and I₂, also at 25 $^{\circ}$. With the exception of the reaction between **3** and HC1, which afforded a trace of h^5 -C₅H₅Fe(CO)₂Cl, no product was isolated which would indicate successful cleavage of the Fe-C bond. The unreacted complex was usually recovered in large amounts (60-100%). A similar result was obtained when **14** was allowed to react with aqueous HC1 at **45'.**

The observed lack of reactivity of the Fe-C bonds in complexes I is best ascribed to steric factors, with the bulky pyrrolidone ring blocking approach of the electrophile (or nucleophile) to the metal-carbon bond site. In agreement with this supposition, sterically hindered transition metal alkyls are known to be relatively unreactive toward HgCl₂³³ or SO_2 .³⁴ Other approaches to cleaving the M-C bonds in these and related complexes are currently being explored in our laboratory.

^{(33) (}a) G. N. Schrauzer, J. H. Weber, T. M. Beckham, and R. K. Y. Ho, *Tetrahedron Lett.,* **275 (1971); (b) A. Adin and J. H. Espenson,** *Chem. Commun.,* **653 (1971).**

(34) (a) S. E. Jacobson, Ph.D. Thesis, The Ohio State University, (38) See, for example, M. L. H. Green, "Organ (39) See, for example, M. L. H. Green, "Organ (39) See, for example, M. L. H. Green, "Organ (39) See, for exam

Scheme IV

Discussion

The facile reactions of a number of transition metal-2 alkenyl and -2-alkynyl complexes with chlorosulfonyl isocyanate attest to the generality of these $(3 + 2)$ cycloaddition with 1,2 metal migration processes. That CISO₂-NCO adds as an electrophile is demonstrated by lack of reactivity of another, considerably less electrophilic isocyanate, C_6H_5NCO , toward $h^5-C_5H_5Fe(CO)_2CH_2C\equiv CCH_3$ under comparable experimental conditions. These results are therefore in line with the previously made observations^{7,13} that $CF_3C(O)CF_3$ and $(CN)_2C=C(CN)_2$ readily engage in such cycloaddition reactions whereas their hydrogen-containing analogs do not.

A consideration of various possible pathways of these electrophilic reactions of $CISO₂NCO$ prompts us to suggest that they most likely involve the zwitterionic h^2 -olefin (IV) and h^2 -allene (V) intermediates.^{35,36} The reactions are thought to proceed as shown in Schemes III and IV. Strong support for the intermediacy of IV in the formation of the 2 pyrrolidone complexes (I) is provided by the recent detection and characterization of a strictly analogous species with $[M] = h^5 \text{-} C_5 H_5 \text{Fe(CO)}_2$ and $R = R' = R'' = H$ and with the attacking electrophile being SO_2 .³⁷ In addition, we believe that the proposed dipolar intermediates IV and V account best for the formation of either I or I11 from the 2-alkenyls and of II only from the 2-alkynyls and $CISO₂NO$. This is elaborated next.

negative nitrogen to the terminal $CH₂$ (cycloaddition) or by displacement of the coordinated $C=C$ double bond by the nitrogen (apparent insertion). The latter event is expected to be favored relative to the former if the metal-olefin bond is comparatively labile with respect to an SN1 or SN2 displacement. Since transition metal-olefin bonding is destabilized by alkyl substitution at the double bond,³⁸ the intermediates IV with $R'' = CH_3$ (or any other alkyl group) are the most likely candidates to rearrange *via* an apparent insertion. Correspondingly, the intermediates IV with $R'' =$ H should be more prone to undergo internal cyclization, as was in fact observed in this study. A qualitatively similar trend has been recently noted for the reactions of h^5 -C₅H₅Fe- $(CO)₂CH₂C(R'')=C(R)R'$ with $SO₂,^{8a, b, 37}$ although in this case the propensity of $SO₂$ for insertion is much greater than for cycloaddition. It is also relevant that the alkyls *h5-* The intermediate IV may collapse either by addition of the

(38) *See,* **for example, M. L. H. Green, "Organometallic Com-**

^{(35).} Similar intermediates were originally proposed for reactions of transition metal-2-alkenyl and -2-alkynyl complexes with ${SO_2}$ in **ref 9 and 36, respectively.**

⁽³⁶⁾ W. D. Bannister, B. L. Booth, R. N. Haszeldine, and P. L. Loader, *J. Chem. SOC. A,* **930 (1971).**

⁽³⁷⁾ S. R. Su and A. Wojcicki, unpublished results

 $C_5H_5Fe(CO)_2R$ (R = CH₃ and CH₂C₆H₅) do not react with $CISO₂NCO$ under comparable conditions. This shows that the formation of 21 from h^5 -C₅H₅Fe(CO)₂CH₂C(CH₃)=CH₂ and $CISO₂NO$ is almost certainly related to the allylic nature of the metal complex.

In principle, this type of dualistic behavior with respect to rearrangement should also extend to V. However, a recent study on nucleophilic reactions of h^5 -C₅H₅Fe(CO)₂(h^5 -CH₂= C=CHR)⁺ (R = CH₃ or C₆H₅) has demonstrated that the coordinated allene is rather inert to displacement.³⁹ Consistent with this observation, we note herein that rearrangement of the intermediates V invariably affords products containing a Δ^3 -pyrrolinone ring (II).

Registry No. $CISO₂NCO$ **, 1189-71-5;** $h⁵-C₅H₅Fe(CO)₂$ **-** $CH_2CH=C(CH_3)_2$, 38905-70-3; h^5 -C₅H₅Fe(CO)₂CH₂CH= CHC_6H_5 , 31798-46-6; h^5 -C₅H₅Fe(CO)₂CH₂CH=CHCH₃, 40199-87-9; $C_6H_5NH_2$, 62-53-3; $(C_2H_5)_2NH$, 109-89-7;

(39) D. W. Lichtenberg and **A.** Wojcicki, *J. Amer. Chem. SOC.,* 94, 8271 (1972).

J. S. Kristoff and D. F. Shriver

 C_6H_5COCl , 98-88-4; h^5 -C₅H₅Fe(CO)₂CH₂C=CCH₃, 34822- $36-1$; h^5 -C₅H₅Fe(CO)₂CH₂C≡CC₆H₅, 33114-75-9; Mn(CO)₅- $32877-62-6$; h^5 -C₅H₅Fe(CO)₂CH₂C \equiv CCH₂Fe(CO)₂(h^5 -C₅H₅), 40199-91-5; CH₃OH, 67-56-1; NaBH₄, 16940-66-2; Na- $[h⁵-C₅H₅Fe(CO)₂]$, 12152-20-4; C₆H₅CHO, 100-52-7; $h⁵$ - $C_5H_5Fe(CO)_2CH_2C(CH_3)=CH_2$, 31781-60-9; p-CH₃C₆H₄- NH_2 , 106-49-0; $Mn(CO)_{5}CH_2CH=CHC_6H_5$, 23108-58-9; $CH_2C \equiv CC_6H_5$, 23626-46-2; h^5 -C₅H₅Mo(CO)₃CH₂C $\equiv CC_6H_5$, 1,38599-33-6; 2, 39015-07-1; 3,40196-20-1; **4,** 40196-21-2; 5,40196-22-3; *6,* 40196-23-4; **7,** 40196-24-5; 8, 40196-25-6; 9,40196-26-7; 10,40196-27-8; 11, 40196-28-9; 12,40196- 29-0; 13,40196-30-3; 14,40196-31-4; 15,40330-49-2; 16, 40196-32-5; 17, 40196-33-6; 18,40196-34-7; 19, 40187-04- 0; 20,40187-05-1; 21, 38905-68-9; 22, 38905-69-0; 23, 40 199-84-6

Acknowledgment. We wish to acknowledge support of this research by the National Science Foundation (Grant GP-35647X and preceding grants).

Contribution from the Department of Chemistry, and Materials Research Center, Northwestern University, Evanston, Illinois 60201

Metal Complexes as Probes of Donor-Acceptor Interaction. Vibrational Spectra of $(\pi$ -C₅H₅)Fe(CO)₂(CNMX₃) (M = B, X = H, F, Cl, Br, or CH₃; M = A1 or Ga, X = C1 or CH₃)

J. *S.* KRISTOFF and D. F. SHRIVER*

Received January 18, 1973

The change in the asymmetric CO stretching frequency, $\Delta \nu_{\rm CO}$ ^{asym}, which occurs upon coordination of an acid to $(\pi$ - C_5H_5)Fe(CO)₂(CN) provides a convenient probe for the electron pair acceptor strength of the acid. In contrast with previous attempts to employ frequency shifts as probes of Lewis acids, the present method is not affected by spurious kinematic coupling between the probe oscillator and other oscillators in the adduct. Values of $\Delta v_{\rm CO}$ asym were determined for group III Lewis acids, and from these, relative electron pair acceptor strengths were deduced: $\tilde{BH}_3 < BF_3 < BCl_3 \approx$ BBr_3 , $\dot{BCl}_3 > \text{GaCl}_3 > \text{AlCl}_3$, and \dot{AICH}_3)₃ $> B(CH_3)$ ₃ \approx $\text{Ga(CH}_3)$ ₃. Comparison of trends in electron pair acceptor strength with acidity trends yields valuable insight into the details of Lewis acid-base interaction. For example, such a comparison provides experimental evidence for the distortion energy of $BH₃$ being less than that of $BF₃$.

Introduction

transfer is a central problem in the understanding of bonding in complexes. While the relative acidity of an acceptor as judged by $\Delta G_{\rm f}^{\circ}$ or $\Delta H_{\rm f}^{\circ}$ is important in describing the extent of complex formation, these thermodynamic data usually do not provide specific information on the donor-acceptor bond because a variety of other bonds are altered upon complex formation. For example, the interaction of a donor with **BF3** leads to considerable change in B-F bond lengths and angles, indicating significant changes in the B-F bond energies. More specific information on the donor-acceptor bond is available from interatomic distances and from force constants, both of which are difficult and sometimes impossible to determine with the required precision. These difficulties have prompted the use of simple spectroscopic criteria for the extent of donor-acceptor interaction, the foremost being nmr chemical shift and infrared absorption frequencies. However, these methods have serious limitations.' For Assessment of the extent of donor-acceptor electron

example, the complex factors which determine nmr chemical shifts lead to considerable uncertainty in the application of this technique to a study of acceptor character.^{1a} Infrared absorption frequencies associated with either the donor-acceptor bond stretch or with the stretch of an adjacent bond, $e.g., v_{CN}$ in nitrile adducts, are of limited value because these modes generally include large contributions from atom motions other than the ones of primary interest.^{1b,c}

In the present work we explore the use of shifts in v_{CO} as criteria for the extent of donor-acceptor interaction with the nitrogen end of cyanide in $(\pi-C_5H_5)Fe(CO)_2(CN)$. The attractive features of the metal carbonyl cyanide as a probe for donor-acceptor interaction are the sensitivity of CO stretching frequencies to the nature of the group attached to cyanide and negligible kinematic coupling of extraneous motions with the CO stretch.

Experimental Section

Materials. $(\pi\text{-}C_sH_s)Fe(CO)_2CN$ was prepared by a modification of Piper, Cotton, and Wilkinson's procedure' in which the refluxing step was replaced by stirring at room temperature for **1.5** hr (yield **40-50%).** The compound was judged pure by C, H, and N analyses and infrared spectra. AlCl, (Matheson, Coleman and Bell) was

(2) T. S. Piper, F. **A.** Cotton, and G. Wilkinson, *J. Inorg. Nucl. Chem.,* **1,** 165 (1955).

^{(1) (}a) T. D. Coyle and F. G. **A.** Stone, *J. Amer. Chem.* **SOC.,** *83,* 4138 (1961); (b) R. C. Taylor, *Advan. Chem. Ser.,* No. 42 (1964); (c) D. F. Shriver and B. Swanson, *Inovg. Chem.,* **10,** 1354 (1971). (d) By contrast, a very promising spectroscopic probe for donoracceptor interaction involves the **esr** of free-radical bases; see T. B. Eames and B. M. Hoffman, J. Amer. Chem. Soc., 93, 3141 (1971).